login
A262707
Positive integers m such that pi(k^2)*pi(m^2) is a square for some 1 < k < m, where pi(x) denotes the number of primes not exceeding x.
3
5, 8, 10, 14, 16, 19, 23, 31, 35, 39, 45, 63, 65, 66, 68, 71, 74, 82, 87, 92, 94, 115, 130, 145, 151, 162, 172, 204, 250, 279, 292, 304, 334, 391, 413, 415, 418, 449, 451, 454, 461, 499, 514, 524, 552, 557, 626, 664, 676, 683, 691, 706, 708, 724, 763, 766, 846, 848, 858, 866
OFFSET
1,1
COMMENTS
Conjecture: The sequence has infinitely many terms.
See also A262700 for a related conjecture.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1000 (n = 1..200 from Zhi-Wei Sun)
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(2) = 8 since pi(8^2)*pi(2^2) = 18*2 = 6^2.
a(3) = 10 since pi(10^2)*pi(3^2) = 25*4 = 10^2.
MATHEMATICA
f[n_]:=PrimePi[n^2]
SQ[n_]:=IntegerQ[Sqrt[n]]
n=0; Do[Do[If[SQ[f[x]*f[y]], n=n+1; Print[n, " ", y]; Goto[aa]], {x, 2, y-1}]; Label[aa]; Continue, {y, 1, 870}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 27 2015
STATUS
approved