login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262704 Triangle: Newton expansion of C(n,m)^3, read by rows. 4
1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Triangle here T_3(n,m) is such that C(n,m)^3 = Sum_{j=0..n} C(n,j)*T_3(j,m).
Equivalently, lower triangular matrix T_3 such that
|| C(n,m)^3 || = A181583 = P * T_3 = A007318 * T_3.
T_3(n,m) = 0 for n < m and for 3*m < n. In fact:
C(x,m)^q and C(x,m), with m nonnegative and q positive integer, are polynomial in x of degree m*q and m respectively, and C(x,m) is a divisor of C(x,m)^q.
Therefore the Newton series will give C(x,m)^q = T_q(m,m)*C(x,m) + T_q(m+1,m)*C(x,m+1) + ... + T_q(q*m,m)*C(x,q*m), where T_q(n,m) is the n-th forward finite difference of C(x,m)^q at x = 0.
Example:
C(x,2)^3 = x^3*(x-1)^3 / 8 = 1*C(x,2) + 24*C(x,3) + 114*C(x,4) + 180*C(x,5) + 90*C(x,6);
C(5,2)^3 = C(5,3)^3 = 1000 = 1*C(5,2) + 24*C(5,3) + 114*C(5,4) + 180*C(5,5) = 1*C(5,3) + 60*C(5,4) + 690*C(5,5).
So we get the expansion of the 3rd power of the binomial coefficient in terms of the binomial coefficients on the same row.
T_1 is the unitary matrix,
T_2 is the transpose of A109983,
T_3 is this sequence,
T_4, T_5 are A262705, A262706.
LINKS
Gheorghe Coserea, Rows n = 0..200, flattened
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
FORMULA
T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n).
EXAMPLE
Triangle starts:
n\m [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 0, 1;
[2] 0, 6, 1;
[3] 0, 6, 24, 1;
[4] 0, 0, 114, 60, 1;
[5] 0, 0, 180, 690, 120, 1;
[6] 0, 0, 90, 2940, 2640, 210, 1;
[7] 0, 0, 0, 5670, 21840, 7770, 336, 1;
[8] 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1;
[9] ...
MATHEMATICA
T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
PROG
(MuPAD)
// as a function
T_3:=(n, m)->_plus((-1)^(n-j)*binomial(n, j)*binomial(j, m)^3 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n, m) $m=0..h]$n=0..h]):
_P_3:=h->matrix([[binomial(n, m)^3 $m=0..h]$n=0..h]):
_T_3:=h->_P(h)^-1*_P_3(h):
(PARI) T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n, j)*binomial(j, m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
(Magma) [&+[(-1)^(n-j)*Binomial(n, j)*Binomial(j, m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
(PARI) t3(n, m) = sum(j=0, n, (-1)^((n-j)%2)* binomial(n, j)*binomial(j, m)^3);
concat(vector(11, n, vector(n, k, t3(n-1, k-1)))) \\ Gheorghe Coserea, Jul 14 2016
CROSSREFS
Row sums are A172634, the inverse binomial transform of the Franel numbers (A000172).
Column sums are the A126086, per the comment given thereto by Brendan McKay.
Second diagonal (T_3(n+1,n)) is A007531 (n+2).
Column T_3(n,2) is A122193(3,n).
Cf. A109983 (transpose of), A262705, A262706.
Sequence in context: A120113 A074395 A355415 * A335245 A195402 A176402
KEYWORD
nonn,tabl,easy
AUTHOR
Giuliano Cabrele, Sep 27 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 13:08 EDT 2024. Contains 371945 sequences. (Running on oeis4.)