login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262695 a(n)=0 if n is in A259934, otherwise 1 + number of steps to reach the farthest leaf in that finite branch of the tree defined by edge-relation A049820(child) = parent. 9
0, 4, 0, 3, 2, 2, 0, 1, 1, 24, 3, 23, 0, 1, 2, 22, 2, 21, 0, 1, 1, 20, 0, 19, 1, 1, 3, 18, 1, 17, 0, 16, 2, 1, 0, 15, 1, 1, 10, 14, 1, 2, 0, 1, 2, 13, 0, 12, 9, 1, 1, 11, 1, 10, 0, 1, 1, 9, 0, 8, 8, 7, 0, 1, 1, 6, 1, 1, 1, 5, 0, 4, 7, 3, 1, 1, 13, 2, 0, 1, 2, 12, 4, 11, 6, 1, 3, 10, 1, 5, 0, 9, 2, 4, 0, 8, 5, 7, 1, 3, 1, 2, 0, 1, 4, 6, 0, 5, 1, 1, 2, 4, 1, 1, 0, 3, 1, 1, 0, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..17724

FORMULA

If A262693(n) = 1 [when n is in A259934],

  then a(n) = 0,

otherwise, if A060990(n) = 0 [when n is one of the leaves, A045765],

  then a(n) = 1,

otherwise:

  a(n) = 1 + Max_{k = A082284(n) .. A262686(n)} [A049820(k) = n] * a(k).

(In the last clause [ ] stands for Iverson bracket, giving as its result 1 only when A049820(k) = n, and 0 otherwise).

EXAMPLE

For n=1, its transitive closure (as defined by edge-relation A049820(child) = parent) is the union of {1} itself together with all its descendants: {1, 3, 4, 5, 7, 8}. We see that there are no other nodes in this subtree whose root is 1, because A049820(3) = 3 - d(3) = 1, A049820(4) = 1, A049820(5) = 3, A049820(7) = 5, A049820(8) = 4 and of these only 7 and 8 are terms of A045765 (leaves). Starting iterating from 7 with A049820, we get 7 -> 5, 5 -> 3, 3 -> 1, and starting from 8 we get 8 -> 4, 4 -> 1, of which the former path is longer (3 steps), thus a(1) = 3+1 = 4.

For n=9, its transitive closure is {9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 27, 29, 31, 33, 35, 36, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79}. In this case the longest path is obtained by starting iterating from the largest of these: 79 -> 77 -> 73 -> 71 -> 69 -> 65 -> 61 -> 59 -> 57 -> 53 -> 51 -> 47 -> 45 -> 39 -> 35 -> 31 -> 29 -> 27 -> 23 -> 21 -> 17 -> 15 -> 11 -> 9, which is 23 steps long, thus a(9) = 23+1 = 24.

PROG

(Scheme, with memoization-macro definec)

(definec (A262695 n) (cond ((= 1 (A262693 n)) 0) (else (let loop ((s 0) (k (A262686 n))) (cond ((<= k n) (+ 1 s)) ((= n (A049820 k)) (loop (max s (A262695 k)) (- k 1))) (else (loop s (- k 1))))))))

CROSSREFS

Cf. A000005, A045765, A049820, A060990, A082284, A259934, A262686, A262693.

Cf. A262522, A262696, A262697.

Cf. also A213725.

Sequence in context: A086165 A227290 A096303 * A021252 A195775 A119708

Adjacent sequences:  A262692 A262693 A262694 * A262696 A262697 A262698

KEYWORD

nonn

AUTHOR

Antti Karttunen, Oct 04 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 21:15 EST 2017. Contains 295919 sequences.