OFFSET
0,6
COMMENTS
T(n,k) = 0 if n is even and k is odd.
T(n,k) = T(n,k+1) if n is odd and k is even.
LINKS
Alois P. Heinz, Rows n = 0..32, flattened
Kival Ngaokrajang, Illustration of initial terms
Dennis P. Walsh, Notes on binary bisymmetric matrices
Wikipedia, Bisymmetric Matrix
FORMULA
G.f. for row n: (1+x)^t*(1+x^2)^(n-t)*(1+x^4)^(((n-2)*n+t)/4) where t = n mod 2. - Alois P. Heinz, Sep 27 2015
EXAMPLE
Irregular table begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 1 1
2: 1 0 2 0 1
3: 1 1 2 2 2 2 2 2 1 1
4: 1 0 4 0 8 0 12 0 14 0 ...
5: 1 1 4 4 10 10 20 20 31 31 ...
...
MAPLE
T:= n-> seq(coeff((t->(1+x^2)^(n-t)*(1+x)^t*(1+x^4)^
(((n-2)*n+t)/4))(irem(n, 2)), x, i), i=0..n^2):
seq(T(n), n=0..6); # Alois P. Heinz, Sep 27 2015
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Kival Ngaokrajang, Sep 26 2015
EXTENSIONS
More terms from Alois P. Heinz, Sep 27 2015
STATUS
approved