%I #13 Oct 17 2015 12:06:45
%S 1,2,3,4,98,120,142,164,172,192,212,223,2082,2102,2203,2213,130282,
%T 130992,131392,131492,131592,131742,131752,131792,131902,132002,
%U 132102,132192,132202,132482,132502,132602,132662,132672,132752,132782,132802
%N Any number greater than a(n) can conjecturally be represented in more ways by sums of three base-10 palindromes than a(n).
%C The corresponding representation counts are provided in A262527. Positions of latest occurrence of increasing minima of representation counts in A261132. The sequence provides numerical evidence for the validity of the conjecture that every number is the sum of three palindromes.
%H Hugo Pfoertner, <a href="/A262526/b262526.txt">Table of n, a(n) for n = 1..1072</a>
%e a(5)=98 because A261132(k)>5 for all k>98.
%e a(7)=142 because A261132(k)>A262527(7)=8 for all k>142.
%Y Cf. A262527, A261132, A002113, A262524, A262525.
%Y See A261422, A262544, A262545 for another approach.
%K nonn,base
%O 1,2
%A _Hugo Pfoertner_, Sep 25 2015