This paper contradicts and provides an alternative result for the problem and solution from the following pages on ProjectP and the Online Encyclopedia of Integer Sequences respectively.
http://www.math.ucsd.edu/~projectp/warmups/eT.html
https://oeis.org/A262402

Formula for number of triangles in a 3 xn grid

The method we will use is to first count the number of combinations of three dots within a 3 xn grid and then subtract the number of three collinear points.

So, we get: $\quad 3 *$ n choose $3-\#$ of collinear points
First, we can subtract the number of collinear vertical lines, which is n.

Then, we can subtract the number of horizontal lines. From each row we will have n choose 3 (for $n>2$) combinations of lines and since we have three rows, it is $3^{*}(\mathrm{n}$ choose 3).

For example, the horizontal 3×4 collinear points would be

```
\bullet
```


-

- -

\bullet
-
-

-
-
-

So, now we are at $3 *$ choose $3-n-3^{*}(n$ choose 3$)$ - collinear points not horizontal or vertical

Simplified, this is $4 n^{\wedge} 3-3 n \wedge 2-n$

The simplest case is 3×2, which is not difficult to see that there are no non horizontal or vertical collinear points.

However, when $n>2$, we need to consider slopes +-1 (if we view this grid as regular x, y axes). Since for slopes of +-1 , you are moving two spots horizontally, there will be $n-2$ lines for both upwards and downwards diagonals as seen below in the 3×5 grid. So we can subtract 2(n-2) for $n>2$.
\bullet
-
-
--
\bullet
\bullet
-
\bullet
\bullet
\bullet
\bullet
-

Likewise, when $n>4$, we need to consider slopes $+-1 / 2$. Similar to the previous case, we count the number of lines by n-4 since we are moving 4 spaces horizontally. So we can subtract $2(\mathrm{n}-4)$ for $\mathrm{n}>4$.

We can see inductively, that we will be subtracting $2(n-k)$ for $n>k$, where k is even. So, our final result is: n is even case:

We have $-2(n-2)-2(n-4)-\ldots-2(n-k)=-2((n-2)+(n-4)+\ldots+4+2)$ $=-4((n-2) / 2+(n-4) / 2+\ldots+3+2+1)=-(n \wedge 2) / 2+n$
n is odd case:

We have $-2(n-2)-2(n-4)-\ldots-2(n-k)=-2((n-2)+(n-4)+\ldots+3+1)$
$=-\left(n^{\wedge} 2\right) / 2+n-1 / 2$

Putting it all together, we get two cases:
n is even:
$4 n \wedge 3-(7 / 2) n \wedge 2$
n is odd:
$4 n^{\wedge} 3-(7 / 2) n^{\wedge} 2-1 / 2$
${ }^{* *}$ Note that we ignored the case where $n=2$, however it can be checked to see that 2 is still correct for the even formula.

