login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262365 A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals. 11
2, 2, 3, 3, 5, 5, 17, 7, 11, 7, 5, 19, 13, 17, 11, 13, 11, 37, 29, 19, 13, 7, 53, 23, 67, 31, 23, 17, 17, 29, 97, 41, 71, 53, 37, 19, 19, 67, 31, 101, 43, 73, 59, 41, 23, 41, 37, 71, 59, 103, 47, 79, 61, 43, 29, 11, 43, 73, 131, 61, 107, 83, 131, 97, 47, 31 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Alois P. Heinz, Antidiagonals n = 1..200, flattened

EXAMPLE

Square array A(n,k) begins:

:  2,  2,  3,  17,  5,  13,   7,  17, ...

:  3,  5,  7,  19, 11,  53,  29,  67, ...

:  5, 11, 13,  37, 23,  97,  31,  71, ...

:  7, 17, 29,  67, 41, 101,  59, 131, ...

: 11, 19, 31,  71, 43, 103,  61, 137, ...

: 13, 23, 53,  73, 47, 107, 113, 139, ...

: 17, 37, 59,  79, 83, 109, 127, 257, ...

: 19, 41, 61, 131, 89, 193, 227, 263, ...

MAPLE

u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):

A:= proc(n, k) local l, p;

      l:= proc() [] end; p:= proc() -1 end;

      while nops(l(k))<n do p(k):= p(k)+1;

        l(k):= [l(k)[], u(k, p(k))[]]

      od: l(k)[n]

    end:

seq(seq(A(n, 1+d-n), n=1..d), d=1..14);

CROSSREFS

Columns k=1-7 give: A000040, A080165, A080166, A262286, A262284, A262287, A262285.

Row n=1 gives A164022.

Main diagonal gives A262366.

Cf. A262350, A262369.

Sequence in context: A032244 A166588 A277321 * A063988 A198453 A316313

Adjacent sequences:  A262362 A262363 A262364 * A262366 A262367 A262368

KEYWORD

nonn,look,base,tabl

AUTHOR

Alois P. Heinz, Sep 20 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 22:31 EDT 2019. Contains 328134 sequences. (Running on oeis4.)