This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262352 a(n) = Sum_{k=0..n} (-1)^k*floor(k^(1/4)). 1
 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,82 LINKS Antti Karttunen, Table of n, a(n) for n = 0..16383 Antti Karttunen, Data supplement: n, a(n) computed for n = 0..65537 FORMULA a(n) = floor(n^(1/4))*(-1)^n/2-((-1)^(floor(n^(1/4))+1)+1)/4. EXAMPLE Letting [] denote the floor function, a(7) = [0^(1/4)] - [1^(1/4)] + [2^(1/4)] - [3^(1/4)] + [4^(1/4)] - [5^(1/4)] + [6^(1/4)] - [7^(1/4)] = 0 - 1 + 1 - 1 + 1 - 1 + 1 - 1 = -1. MATHEMATICA Print[Table[Sum[(-1)^k*Floor[k^(1/4)], {k, 0, n}], {n, 0, 100}]] ; PROG (PARI) a(n)=floor(n^(1/4))*(-1)^n/2-((-1)^(floor(n^(1/4))+1)+1)/4 (PARI) a(n)=sum(k=0, n, (-1)^k*floor(k^(1/4))) (PARI) A262352(n) = sum(k=0, n, ((-1)^k)*sqrtnint(k, 4)); \\ Antti Karttunen, Nov 06 2018 CROSSREFS Cf. A270370, A268173, A022554, A031876, A032512, A032513, A032514, A032515, A032516, A032517, A032518, A032519, A032520, A032521. Sequence in context: A305831 A022927 A063435 * A167964 A280193 A228826 Adjacent sequences:  A262349 A262350 A262351 * A262353 A262354 A262355 KEYWORD sign,easy AUTHOR John M. Campbell, Mar 24 2016 EXTENSIONS More terms from Antti Karttunen, Nov 06 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 05:19 EDT 2019. Contains 326318 sequences. (Running on oeis4.)