This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262347 Number of subsets of [1..n] of maximal size that are free of 3-term arithmetic progressions. 1
 1, 1, 3, 2, 1, 4, 10, 25, 4, 24, 7, 25, 6, 1, 4, 14, 43, 97, 220, 2, 18, 62, 232, 2, 33, 2, 12, 36, 106, 1, 11, 2, 4, 14, 40, 2, 4, 86, 307, 20, 1, 4, 14, 41, 99, 266, 674, 1505, 3510, 7726, 14, 50, 156, 2, 8, 26, 56, 2, 4, 6, 14, 48, 2, 4, 8, 16, 28, 108, 319, 1046, 4, 26, 82, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The sequence A003002 gives the size of the largest subset of the integers up to n that avoids three-term arithmetic progressions. This sequence gives the number of distinct subsets of [1..n] that have that size and are free of three-term arithmetic progressions. LINKS Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140 Fausto A. C. Cariboni, All sets that yield a(n) for n = 4..130., Feb 19 2018. Janusz Dybizbanski, Sequences containing no 3-term arithmetic progressions, The Electronic Journal of Combinatorics, 19, no. 2 (2012). EXAMPLE The largest subset of [1,6] that doesn't have any 3 terms in arithmetic progression has size 4. There are 4 such subsets with this property: {1,2,4,5}, {1,2,5,6}, {1,3,4,6} and {2,3,5,6}, so a(6)=4. MAPLE G:= proc(n, cons, t) option remember; local consn, consr;    if n < t or member({}, cons) then return {} fi;    if t = 0 then return {{}} fi;    consn, consr:= selectremove(has, cons, n);    consn:= subs(n=NULL, consn);    procname(n-1, consr, t) union       map(`union`, procname(n-1, consr union   consn, t-1), {n}); end proc: F:= proc(n) local m, cons, R;    m:= A003002(n-1);    cons:= {seq(seq({i, i+j, i+2*j}, i=1..n-2*j), j=1..(n-1)/2)};    R:= G(n, cons, m+1);    if R = {} then       A003002(n):= m;       G(n, cons, m);    else       A003002(n):= m+1;       R    fi end proc: A003002(1):= 1: a[1]:= 1: for n from 2 to 40 do   a[n]:= nops(F(n)) od: seq(a[i], i=1..40); # Robert Israel, Sep 20 2015 CROSSREFS Cf. A003002, A065825. Sequence in context: A028412 A156699 A245183 * A182236 A077819 A030313 Adjacent sequences:  A262344 A262345 A262346 * A262348 A262349 A262350 KEYWORD nonn AUTHOR Nathan McNew, Sep 18 2015 EXTENSIONS a(25) to a(44) from Robert Israel, Sep 20 2015 a(45) to a(75) from Fausto A. C. Cariboni, Jan 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 22 11:34 EDT 2019. Contains 326176 sequences. (Running on oeis4.)