login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262347 Number of subsets of [1..n] of maximal size that are free of 3-term arithmetic progressions. 1
1, 1, 3, 2, 1, 4, 10, 25, 4, 24, 7, 25, 6, 1, 4, 14, 43, 97, 220, 2, 18, 62, 232, 2, 33, 2, 12, 36, 106, 1, 11, 2, 4, 14, 40, 2, 4, 86, 307, 20, 1, 4, 14, 41, 99, 266, 674, 1505, 3510, 7726, 14, 50, 156, 2, 8, 26, 56, 2, 4, 6, 14, 48, 2, 4, 8, 16, 28, 108, 319, 1046, 4, 26, 82, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The sequence A003002 gives the size of the largest subset of the integers up to n that avoids three-term arithmetic progressions. This sequence gives the number of distinct subsets of [1..n] that have that size and are free of three-term arithmetic progressions.

LINKS

Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140

Fausto A. C. Cariboni, All sets that yield a(n) for n = 4..130., Feb 19 2018.

Janusz Dybizbanski, Sequences containing no 3-term arithmetic progressions, The Electronic Journal of Combinatorics, 19, no. 2 (2012).

EXAMPLE

The largest subset of [1,6] that doesn't have any 3 terms in arithmetic progression has size 4. There are 4 such subsets with this property: {1,2,4,5}, {1,2,5,6}, {1,3,4,6} and {2,3,5,6}, so a(6)=4.

MAPLE

G:= proc(n, cons, t)

option remember;

local consn, consr;

   if n < t or member({}, cons) then return {} fi;

   if t = 0 then return {{}} fi;

   consn, consr:= selectremove(has, cons, n);

   consn:= subs(n=NULL, consn);

   procname(n-1, consr, t) union

      map(`union`, procname(n-1, consr union   consn, t-1), {n});

end proc:

F:= proc(n)

local m, cons, R;

   m:= A003002(n-1);

   cons:= {seq(seq({i, i+j, i+2*j}, i=1..n-2*j), j=1..(n-1)/2)};

   R:= G(n, cons, m+1);

   if R = {} then

      A003002(n):= m;

      G(n, cons, m);

   else

      A003002(n):= m+1;

      R

   fi

end proc:

A003002(1):= 1:

a[1]:= 1:

for n from 2 to 40 do

  a[n]:= nops(F(n))

od:

seq(a[i], i=1..40); # Robert Israel, Sep 20 2015

CROSSREFS

Cf. A003002, A065825.

Sequence in context: A028412 A156699 A245183 * A182236 A077819 A030313

Adjacent sequences:  A262344 A262345 A262346 * A262348 A262349 A262350

KEYWORD

nonn

AUTHOR

Nathan McNew, Sep 18 2015

EXTENSIONS

a(25) to a(44) from Robert Israel, Sep 20 2015

a(45) to a(75) from Fausto A. C. Cariboni, Jan 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 11:34 EDT 2019. Contains 326176 sequences. (Running on oeis4.)