login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262342 Area of Lewis Carroll's paradoxical F(2n+1) X F(2n+3) rectangle. 2
10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290, 3372041405099481410 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Warren Weaver (1938): "In a familiar geometrical paradox a square of area 8 X 8 = 64 square units is cut into four parts which may be refitted to form a rectangle of apparent area 5 X 13 = 65 square units.... Lewis Carroll generalized this paradox...."

Carroll cuts a F(2n+2) X F(2n+2) square into four parts, where F(n) is the n-th Fibonacci number. Two parts are right triangles with legs F(2n) and F(2n+2); two are right trapezoids three of whose sides are F(2n), F(2n+1), and F(2n+1). (Thus n > 0.) The paradox (or dissection fallacy) depends on Cassini's identity F(2n+1) * F(2n+3) = F(2n+2)^2 + 1.

For an extension of the paradox to a F(2n+1) X F(2n+1) square using Cassini's identity F(2n) * F(2n+2) = F(2n+1)^2 - 1, see Dudeney (1970), Gardner (1956), Horadam (1962), Knott (2014), Kumar (1964), and Sillke (2004). Sillke also has many additional references and links.

REFERENCES

W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th edition, Dover, 1987, p. 85.

Henry E. Dudeney, 536 Puzzles and Curious Problems, Scribner, reprinted 1970, Problems 352-353 and their answers.

Martin Gardner, Mathematics, Magic and Mystery, Dover, 1956, Chap. 8.

Edward Wakeling, Rediscovered Lewis Carroll Puzzles, Dover, 1995, p. 12.

David Wells, The Penguin Book of Curious and Interesting Puzzles, Penguin, 1997, Puzzle 143.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Margherita Barile, Dissection Fallacy, MathWorld

A. F. Horadam, Fibonacci Sequences and a Geometrical Paradox, Math. Mag., 35 (1962), 1-11.

Ron Knott, Fibonacci jigsaw puzzles, 2014.

Santosh Kumar, On Fibonacci Sequences and a Geometrical Paradox, Math. Mag., 37 (1964), 221-223.

Torsten Sillke, Jigsaw paradox, 2004.

David Singmaster, Vanishing area puzzles, Recreational Math. Mag., 1 (2014), 10-21.

Warren Weaver, Lewis Carroll and a Geometrical Paradox, American Math. Monthly, 45 (1938), 234-236.

Wikipedia, Cassini and Catalan identities

Wikipedia, Fibonacci number

Wikipedia, Missing square puzzle; also see External Links.

Index entries for linear recurrences with constant coefficients, signature (8,-8,1).

FORMULA

a(n) = Fibonacci(2n+1) * Fibonacci(2n+3) = Fibonacci(2n+2)^2 + 1 for n > 0.

From Colin Barker, Oct 17 2015: (Start)

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).

G.f.: -x*(2*x^2-15*x+10) / ((x-1)*(x^2-7*x+1)).

(End)

a(3*k-2) mod 2 = 0; a(3*k-1) mod 2 = 1; a(3*k) mod 2 = 0, k > 0. - Altug Alkan, Oct 17 2015

a(n) = A059929(2*n+1) = A070550(4*n+1) = A166516(2*n+2) = A190018(8*n) = A236165(4*n+4) = A245306(2*n+2). - Bruno Berselli, Oct 17 2015

a(n) = A064170(n+3). - Alois P. Heinz, Oct 17 2015

E.g.f.: (1/5)*((1/phi*r)*exp(b*x) + (phi^4/r)*exp(a*x) + 3*exp(x) - 10), where r = 2*phi+1, 2*a=7+3*sqrt(5), 2*b=7-3*sqrt(5). - G. C. Greubel, Oct 17 2015

EXAMPLE

F(3) * F(5) = 2 * 5 = 10 = 3^2 + 1 = F(4)^2 + 1, so a(1) = 10.

G.f. = 10*x + 65*x^2 + 442*x^3 + 3026*x^4 + 20737*x^5 + 142130*x^6 + 974170*x^7 + ...

MAPLE

with(combinat): A262342:=n->fibonacci(2*n+1)*fibonacci(2*n+3): seq(A262342(n), n=1..30); # Wesley Ivan Hurt, Oct 16 2015

MATHEMATICA

Table[Fibonacci[2 n + 1] Fibonacci[2 n + 3], {n, 22}]

PROG

(MAGMA) [Fibonacci(2*n+1)*Fibonacci(2*n+3) : n in [1..30]]; // Wesley Ivan Hurt, Oct 16 2015

(PARI) Vec(-x*(2*x^2-15*x+10)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Colin Barker, Oct 17 2015

(PARI) a(n) = fibonacci(2*n+1) * fibonacci(2*n+3) \\ Altug Alkan, Oct 17 2015

CROSSREFS

Cf. A000045, A001519, A059929, A064170, A070550, A166516, A190018, A236165, A245306.

Sequence in context: A212259 A198848 A215764 * A140362 A159838 A269679

Adjacent sequences:  A262339 A262340 A262341 * A262343 A262344 A262345

KEYWORD

nonn,easy

AUTHOR

Jonathan Sondow, Oct 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 26 08:41 EDT 2017. Contains 289800 sequences.