login
A262338
T(n,k)=Number of (n+3)X(k+3) 0..1 arrays with each row and column divisible by 9, read as a binary number with top and left being the most significant bits.
6
2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 29, 225, 512, 225, 29, 57, 841, 3375, 3375, 841, 57, 114, 3249, 24389, 19149, 24389, 3249, 114, 228, 12996, 185193, 132085, 132085, 185193, 12996, 228, 456, 51984, 1481544, 1268613, 923065, 1268613, 1481544, 51984, 456
OFFSET
1,1
COMMENTS
Table starts
...2......4........8........15........29........57.......114........228
...4.....16.......64.......225.......841......3249.....12996......51984
...8.....64......512......3375.....24389....185193...1481544...11852352
..15....225.....3375.....19149....132085...1268613..15745355..207996061
..29....841....24389....132085....923065..12317549.264095825.6638113901
..57...3249...185193...1268613..12317549.330217585
.114..12996..1481544..15745355.264095825
.228..51984.11852352.207996061
.456.207936.94818816
.911.829921
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +3*a(n-4) -2*a(n-5)
k=2: [order 11]
k=3: [order 17]
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..0..1..1..0....0..1..1..1..1..1..1....0..0..1..0..0..1..0
..1..1..1..1..1..1..0....1..0..1..1..0..1..0....1..0..1..0..0..0..1
..0..1..1..0..1..1..0....0..1..0..1..1..0..1....0..1..1..1..1..1..1
..0..1..0..1..1..0..1....0..0..0..0..0..0..0....0..1..1..1..1..1..1
..1..1..1..1..1..1..0....1..0..0..1..0..0..0....1..0..1..0..0..0..1
..0..1..0..0..1..0..0....0..0..1..0..0..1..0....0..1..1..1..1..1..1
..0..0..1..1..0..1..1....0..1..1..1..1..1..1....0..1..0..1..1..0..1
CROSSREFS
Sequence in context: A189161 A189343 A189779 * A368043 A283691 A283130
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 18 2015
STATUS
approved