login
A262280
Number of ways to select a nonempty subset s from an n-set and then partition s into blocks of equal size.
3
0, 1, 4, 11, 29, 72, 190, 527, 1552, 5031, 18087, 66904, 266381, 1164516, 5215644, 23868103, 117740143, 609872350, 3268548406, 18110463455, 102867877414, 620476915965, 4005216028161, 25747549921338, 166978155172420, 1168774024335203, 8556355097320141
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(x) * Sum_{k>=1} (exp(x^k/k!)-1).
a(n) = Sum_{k=1..n} C(n,k) * A038041(k).
a(n) = A262320(n) - 1.
EXAMPLE
a(3) = 11: 1, 2, 3, 12, 1|2, 13, 1|3, 23, 2|3, 123, 1|2|3.
MAPLE
b:= proc(n) option remember;
add(1/(d!*(n/d)!^d), d=numtheory[divisors](n))
end:
a:= n-> n! * add(b(k)/(n-k)!, k=1..n):
seq(a(n), n=0..30);
MATHEMATICA
b[n_] := b[n] = DivisorSum[n, 1/(#!*(n/#)!^#)&]; a[n_] := n!*Sum[b[k]/(n-k)!, {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
CROSSREFS
Sequence in context: A220018 A131046 A109803 * A027968 A027970 A027972
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 17 2015
STATUS
approved