login
A262274
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each row and column divisible by 5, read as a binary number with top and left being the most significant bits.
9
2, 4, 4, 7, 16, 7, 13, 49, 49, 13, 26, 169, 149, 169, 26, 52, 676, 585, 585, 676, 52, 103, 2704, 3639, 3253, 3639, 2704, 103, 205, 10609, 23977, 37061, 37061, 23977, 10609, 205, 410, 42025, 129481, 467065, 828152, 467065, 129481, 42025, 410, 820, 168100
OFFSET
1,1
COMMENTS
Table starts
...2......4........7.........13............26..............52.............103
...4.....16.......49........169...........676............2704...........10609
...7.....49......149........585..........3639...........23977..........129481
..13....169......585.......3253.........37061..........467065.........4403641
..26....676.....3639......37061........828152........20331508.......411861253
..52...2704....23977.....467065......20331508......1002110608.....41261408089
.103..10609...129481....4403641.....411861253.....41261408089...3605017226155
.205..42025...762529...49793329....9709537177...1965295140265.349760937840517
.410.168100..4977703..628659565..246785045498.100013594816980
.820.672400.33121201.8114855785.6349411267540
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -3*a(n-2) +3*a(n-3) -2*a(n-4)
k=2: [order 8]
k=3: [order 53]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..1..1..1....0..0..0..0..0..0....0..0..1..0..1..0....1..1..0..0..1..0
..1..0..1..0..0..0....0..0..0..0..0..0....0..0..0..1..0..1....0..1..0..1..0..0
..0..0..0..1..0..1....0..1..1..0..0..1....0..0..1..0..1..0....1..1..0..0..1..0
..1..0..1..1..0..1....1..1..0..1..1..1....1..1..0..1..1..1....1..1..1..1..0..0
..0..0..1..0..1..0....0..1..1..0..0..1....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..1..1..1..1....1..1..0..1..1..1....1..1..0..0..1..0....1..0..1..0..0..0
CROSSREFS
Sequence in context: A206994 A181224 A188567 * A223669 A223680 A189264
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 17 2015
STATUS
approved