login
A262212
Minimum number of 2's such that n*[n; 2, ..., 2, n] = [x; ..., x] for some x, where [...] denotes simple continued fractions.
22
1, 3, 3, 2, 3, 5, 7, 11, 5, 11, 3, 6, 5, 11, 15, 7, 11, 19, 11, 11, 11, 21, 7, 14, 13, 35, 11, 4, 11, 29, 31, 11, 7, 5, 11, 18, 19, 27, 23, 9, 11, 43, 11, 11, 21, 45, 15, 41, 29, 7, 27, 26, 35, 11, 23, 19, 9, 19, 11, 30, 29, 11, 63, 20, 11, 67, 7, 43, 5, 69, 23, 35, 37, 59, 19, 11, 27, 25, 47, 107, 9, 83, 11, 23, 43, 19, 23, 43, 11, 41, 43, 59, 45, 59, 31
OFFSET
2,2
COMMENTS
Sequence A213891 lists fixed points of this sequence.
MATHEMATICA
f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; f[2, #] & /@ Range[2, 120] (* Michael De Vlieger, Sep 16 2015 *)
PROG
(PARI) cf(v)={t=v[#v]; forstep(i=#v-1, 1, -1, t=v[i]+1/t); t}
A262212(n, d=2)=for(k=1, 9e9, (c=contfrac(cf(vector(k+2, i, if(i>1&&i<k+2, d, n)))*n))[1]==c[#c]&&return(k))
KEYWORD
nonn
AUTHOR
M. F. Hasler, Sep 15 2015
STATUS
approved