login
Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value <= 4.
4

%I #7 Aug 30 2021 06:36:54

%S 1,1,2,5,20,86,516,3135,25080,196468,1964680,18827225,225926700,

%T 2559350288,35830904032,468385940355,7494175045680,111029569712844,

%U 1998532254831192,33092842524631733,661856850492634660,12113055891685809704,266487229617087813488

%N Number of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value <= 4.

%H Alois P. Heinz, <a href="/A262166/b262166.txt">Table of n, a(n) for n = 0..455</a>

%F a(n) = A262163(n,4).

%p b:= proc(u, o, c) option remember; `if`(c<0 or c>4, 0, `if`(u+o=0,

%p x^c, (p-> add(coeff(p, x, i)*x^max(i, c), i=0..4))(add(

%p b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))

%p end:

%p a:= n-> (p-> add(coeff(p, x, i), i=0..min(n, 4)))(b(0, n, 0)):

%p seq(a(n), n=0..25);

%t b[u_, o_, c_] := b[u, o, c] = If[c < 0 || c > 4, 0, If[u + o == 0, x^c, Function[p, Sum[Coefficient[p, x, i]*x^Max[i, c], {i, 0, 4}]][Sum[b[u - j, o - 1 + j, c - 1], {j, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, o}]]]];

%t a[n_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, 4]}]][b[0, n, 0]];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Aug 30 2021, after _Alois P. HeInz_ *)

%Y Column k=4 of A262163.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 13 2015