The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262145 O.g.f.: exp( Sum_{n >= 1} A000182(n+1)*x^n/n ), where A000182 is the sequence of tangent numbers. 3
 1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, 3287849716332, 501916845156012, 93337607623037544, 20766799390944491100, 5446109742113077482456, 1662395457873577922274888 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS It appears that the sequence has integer entries. Calculation suggests the following conjecture: the expansion of exp( Sum_{n >= 1} A000182(n + m)*x^n/n ) has integer coefficients for m = 1, 2, 3, .... This is the case m = 1. Cf. A255881 and A255895. First row of square array A262144. LINKS FORMULA Recurrence: a(n) = 1/n * Sum_{k = 1..n} A000182(k+1)*a(n-k). MAPLE #define tangent numbers A000182 A000182 := n -> (1/2) * 2^(2*n) * (2^(2*n) - 1) * abs(bernoulli(2*n))/n: a := proc (n) option remember; if n = 0 then 1 else   add(A000182(k+1)*a(n-k), k = 1 .. n)/n end if; end proc: seq(a(n), n = 0 .. 15); MATHEMATICA max = 15; CoefficientList[E^Sum[(-1)^n*2^(2*n+1)*(4^(n+1)-1)*BernoulliB[2*(n+1)]*x^n / (n*(n+1)), {n, 1, max}] + O[x]^max, x] (* Jean-François Alcover, Sep 18 2015 *) PROG (Sage) def a_list(n):     T = [0]*(n+2); T[1] = 1     for k in range(2, n+1): T[k] = (k-1)*T[k-1]     for k in range(2, n+1):         for j in range(k, n+1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]     @cached_function     def a(n): return sum(T[k+1]*a(n-k) for k in (1..n))//n if n> 0 else 1     return [a(k) for k in range(n)] a_list(15) # Peter Luschny, Sep 18 2015 CROSSREFS Cf. A000182, A255881, A255895, A262144 (first row). Sequence in context: A306064 A185396 A003222 * A003167 A240625 A062412 Adjacent sequences:  A262142 A262143 A262144 * A262146 A262147 A262148 KEYWORD nonn,easy AUTHOR Peter Bala, Sep 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 19:09 EST 2020. Contains 331249 sequences. (Running on oeis4.)