OFFSET
1,3
COMMENTS
Shanks's array d(n,k) n >= 1, k >= 1, is A235606.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 1, 2, ... and for each n >= 1, the expansion of exp( Sum_{i >= 1} d(n,i + r)*x^i/i ) has integer coefficients. This is the case r = 1.
For the similarly defined array associated with Shanks' c(n,k) array see A262143.
LINKS
William Y. C. Chen, Neil J. Y. Fan, Jeffrey Y. T. Jia , The generating function for the Dirichlet series Lm(s) Mathematics of Computation, Vol. 81, No. 278, April 2012.
D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 689-694.
D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
EXAMPLE
The triangular array begins
1
1 2
1 11 10
1 46 241 108
1 128 2739 10411 2214
1 272 16384 265244 836321 75708
1 522 64964 2883584 45094565 112567243 3895236
1 904 212325 18852096 822083584 12975204810 22949214033 ...
The square array begins (row indexing n starts at 1)
1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, ...
1, 11, 241, 10411, 836321, 112567243, 22949214033, 6571897714923, 2507281057330113, ...
1, 46, 2739, 265244, 45094565, 12975204810, 5772785327575, 3656385436507960, 3107332328608143945, ...
1, 128, 16384, 2883584, 822083584, 395136991232, 300338473074688, 330739694704787456, 493338658405976375296, ...
1, 272, 64864, 18852096, 8133183744, 5766226378752, 6562478680375296, 11019751545852395520, 25333348417380699340800, ...
1, 522, 212325, 94501768, 57064909374, 54459242196516, 84430282319806062, 197625548666434041000, 642556291067409622713543, ...
1, 904, 586452, 382674008, 311514279098, 379982635729752, 753288329161251844, 2308779464340711480136, 10003494921382094286802995, ...
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Sep 18 2015
STATUS
approved