%I #5 Sep 12 2015 12:43:27
%S 181,7021,266761,10130041,384674941,14607517861,554701003921,
%T 21064030631281,799878462984901,30374317562795101,1153424188923229081,
%U 43799744861519910121,1663236880548833355661,63159201715994147605141,2398386428327228775639841
%N The first of nine consecutive positive integers the sum of the squares of which is equal to the sum of the squares of ten consecutive positive integers.
%C For the first of the corresponding ten consecutive positive integers, see A262142.
%H Colin Barker, <a href="/A262141/b262141.txt">Table of n, a(n) for n = 1..632</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (39,-39,1).
%F a(n) = 39*a(n-1)-39*a(n-2)+a(n-3) for n>3.
%F G.f.: -x*(x^2-38*x+181) / ((x-1)*(x^2-38*x+1)).
%e 181 is in the sequence because 181^2 + ... + 189^2 = 308085 = 171^2 + ... + 180^2.
%o (PARI) Vec(-x*(x^2-38*x+181)/((x-1)*(x^2-38*x+1)) + O(x^30))
%Y Cf. A262142.
%K nonn,easy
%O 1,1
%A _Colin Barker_, Sep 12 2015