login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262124 Number A(n,k) of permutations p of [n] such that the up-down signature of p has nonnegative partial sums with a maximal value <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals. 15
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 3, 5, 0, 1, 1, 1, 3, 8, 16, 0, 1, 1, 1, 3, 9, 40, 61, 0, 1, 1, 1, 3, 9, 44, 162, 272, 0, 1, 1, 1, 3, 9, 45, 219, 1134, 1385, 0, 1, 1, 1, 3, 9, 45, 224, 1445, 6128, 7936, 0, 1, 1, 1, 3, 9, 45, 225, 1568, 9985, 55152, 50521, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,14

LINKS

Alois P. Heinz, Antidiagonals n = 0..100, flattened

FORMULA

A(n,k) = Sum_{i=0..k} A262125(n,i).

EXAMPLE

p = 1423 is counted by T(4,1) because the up-down signature of p = 1423 is 1,-1,1 with partial sums 1,0,1.

q = 1432 is not counted by any T(4,k) because the up-down signature of q = 1432 is 1,-1,-1 with partial sums 1,0,-1.

A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.

A(4,2) = 8: 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.

A(4,3) = 9: 1234, 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.

Square array A(n,k) begins:

1,   1,    1,    1,    1,    1,    1,    1, ...

1,   1,    1,    1,    1,    1,    1,    1, ...

0,   1,    1,    1,    1,    1,    1,    1, ...

0,   2,    3,    3,    3,    3,    3,    3, ...

0,   5,    8,    9,    9,    9,    9,    9, ...

0,  16,   40,   44,   45,   45,   45,   45, ...

0,  61,  162,  219,  224,  225,  225,  225, ...

0, 272, 1134, 1445, 1568, 1574, 1575, 1575, ...

MAPLE

b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, x^c,

      (p-> add(coeff(p, x, i)*x^max(i, c), i=0..degree(p)))(add(

       b(u-j, o-1+j, c-1), j=1..u)+add(b(u+j-1, o-j, c+1), j=1..o))))

    end:

A:= (n, k)-> `if`(n=0, 1, (p-> add(coeff(p, x, i), i=0..min(n, k))

              )(add(b(j-1, n-j, 0), j=1..n))):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

b[u_, o_, c_] := b[u, o, c] = If[c<0, 0, If[u+o == 0, x^c, Function[p, Sum[ Coefficient[p, x, i]*x^Max[i, c], {i, 0, Exponent[p, x]}]][Sum[b[u-j, o - 1+j, c-1], {j, 1, u}] + Sum[b[u+j-1, o-j, c+1], {j, 1, o}]]]]; A[n_, k_] := If[n==0, 1, Function[p, Sum[Coefficient[p, x, i], {i, 0, Min[n, k]}]][ Sum[b[j-1, n-j, 0], {j, 1, n}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-Fran├žois Alcover, Feb 22 2016, after Alois P. Heinz *)

CROSSREFS

Columns k=1-10 give: A000111, A262126, A262128, A262129, A262130, A262131, A262132, A262133, A262134, A262135.

Main diagonal gives A000246.

Cf. A258829, A262125.

Sequence in context: A187596 A263863 A134655 * A199954 A219987 A077614

Adjacent sequences:  A262121 A262122 A262123 * A262125 A262126 A262127

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 06:02 EDT 2018. Contains 316432 sequences. (Running on oeis4.)