OFFSET
0,2
COMMENTS
Self-convolution fourth power of A262013.
FORMULA
G.f.: x / Series_Reversion( Sum_{n>=0} (4*n)!/(n!)^4 * x^(n+1) ).
EXAMPLE
G.f.: A(x) = 1 + 24*x + 1944*x^2 + 215808*x^3 + 27736920*x^4 + 3879912960*x^5 +...
such that
A(x) = 1 + 24*x/A(x) + 2520*x^2/A(x)^2 + 369600*x^3/A(x)^3 + 63063000*x^4/A(x)^4 + 11732745024*x^5/A(x)^5 +...+ (4*n)!/(n!)^4 * x^n/A(x)^n +...
PROG
(PARI) {a(n) = local(A); A = x/serreverse( x*sum(m=0, n, (4*m)!/(m!)^4*x^m +x*O(x^n)) ) ; polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2015
STATUS
approved