login
A262010
G.f. A(x) satisfies: A(x) = Sum_{n>=0} (4*n)!/(n!)^4 * x^n / A(x)^n.
1
1, 24, 1944, 215808, 27736920, 3879912960, 573515224128, 88128590118912, 13937449300517592, 2253641284021079040, 370887799310890842816, 61919951199385511890944, 10461342569407280971842240, 1785259939840128008227676160, 307282893462557980175918292480, 53283529423650333161886781538304, 9299430498554929711121662876725720
OFFSET
0,2
COMMENTS
Self-convolution fourth power of A262013.
FORMULA
G.f.: x / Series_Reversion( Sum_{n>=0} (4*n)!/(n!)^4 * x^(n+1) ).
EXAMPLE
G.f.: A(x) = 1 + 24*x + 1944*x^2 + 215808*x^3 + 27736920*x^4 + 3879912960*x^5 +...
such that
A(x) = 1 + 24*x/A(x) + 2520*x^2/A(x)^2 + 369600*x^3/A(x)^3 + 63063000*x^4/A(x)^4 + 11732745024*x^5/A(x)^5 +...+ (4*n)!/(n!)^4 * x^n/A(x)^n +...
PROG
(PARI) {a(n) = local(A); A = x/serreverse( x*sum(m=0, n, (4*m)!/(m!)^4*x^m +x*O(x^n)) ) ; polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A002671 A328126 A225220 * A267075 A263605 A327197
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2015
STATUS
approved