OFFSET
1,1
COMMENTS
Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for i = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k and j = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)). Note that strong (2,3,5)-primes (A262727) form a proper subset of {2,3,5}-primes. It may be of interest to consider the sets of {2,3,5,7}-primes, {2,3,5,7,11}-primes, etc. Is every such set infinite?
MATHEMATICA
{b1, b2, b3} = {2, 3, 5}; z = 10000000;
Select[Prime[Range[z]],
PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &&
PrimeQ[FromDigits[IntegerDigits[#, b1], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &&
PrimeQ[FromDigits[IntegerDigits[#, b2], b3]] &&
PrimeQ[FromDigits[IntegerDigits[#, b3], b1]] &&
PrimeQ[FromDigits[IntegerDigits[#, b3], b2]] &]
(* Peter J. C. Moses, Sep 27 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Nov 09 2015
STATUS
approved