This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261959 Number A(n,k) of ordered set partitions of {1,2,...,n} such that no part has the same size as any of its k immediate predecessors; square array A(n,k), n>=0, k>=0, read by antidiagonals. 10
 1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 1, 1, 1, 7, 75, 1, 1, 1, 7, 21, 541, 1, 1, 1, 7, 9, 81, 4683, 1, 1, 1, 7, 9, 31, 793, 47293, 1, 1, 1, 7, 9, 31, 403, 4929, 545835, 1, 1, 1, 7, 9, 31, 403, 1597, 33029, 7087261, 1, 1, 1, 7, 9, 31, 403, 757, 7913, 388537, 102247563 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Alois P. Heinz, Antidiagonals n = 0..50, flattened EXAMPLE A(3,1) = 7: 123, 1|23, 23|1, 2|13, 13|2, 3|12, 12|3. A(4,1) = 21: 1234, 1|234, 234|1, 2|134, 134|2, 3|124, 124|3, 4|123, 123|4, 3|12|4, 4|12|3, 2|13|4, 4|13|2, 2|14|3, 3|14|2, 1|23|4, 4|23|1, 1|24|3, 3|24|1, 1|34|2, 2|34|1. Square array A(n,k) begins: :    1,   1,   1,   1,   1,   1,   1, ... :    1,   1,   1,   1,   1,   1,   1, ... :    3,   1,   1,   1,   1,   1,   1, ... :   13,   7,   7,   7,   7,   7,   7, ... :   75,  21,   9,   9,   9,   9,   9, ... :  541,  81,  31,  31,  31,  31,  31, ... : 4683, 793, 403, 403, 403, 403, 403, ... MAPLE b:= proc(n, l) option remember; `if`(n=0, 1,        add(`if`(j in l, 0, binomial(n, j)*b(n-j,       `if`(l=[], [], [subsop(1=NULL, l)[], j]))), j=1..n))     end: A:= (n, k)-> b(n, [0\$min(n, k)]): seq(seq(A(n, d-n), n=0..d), d=0..10); MATHEMATICA b[n_, l_List] := b[n, l] = If[n == 0, 1, Sum[If[MemberQ[l, j], 0, Binomial[n, j]*b[n-j, If[l == {}, {}, Append[ReplacePart[l, 1 -> Nothing], j]]]], {j, 1, n}]]; A[n_, k_] := b[n, Array[0&, Min[n, k]]];  Table[A[n, d-n], {d, 0, 10} , {n, 0, d}] // Flatten (* Jean-François Alcover, Dec 17 2016, after Alois P. Heinz *) CROSSREFS Columns k=0..6 give A000670, A114902, A261961, A272431, A272432, A272433, A272434. Main diagonal gives A032011. Cf. A261960. Sequence in context: A228637 A152795 A121585 * A257565 A276121 A262809 Adjacent sequences:  A261956 A261957 A261958 * A261960 A261961 A261962 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Sep 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 18 16:20 EDT 2019. Contains 321292 sequences. (Running on oeis4.)