OFFSET
0,2
COMMENTS
See a comment on V-V and V-S at A249246.
There are a total of 16 combinations as shown in the table below:
+-------------------------------------------------------+
| Even n-th version V-V S-V V-S S-S |
+-------------------------------------------------------+
| Odd n-th version |
+-------------------------------------------------------+
Note: V-V = vertex to vertex, S-V = side to vertex,
V-S = vertex to side, S-S = side to side.
LINKS
Kival Ngaokrajang, Illustration of initial terms
FORMULA
Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-8)-a(n-10) for n>13.
G.f.: -(3*x^13+9*x^12-15*x^11-13*x^10-9*x^9-5*x^8-9*x^7-3*x^6-9*x^5-6*x^4-12*x^3-5*x^2-3*x-1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).
(End)
PROG
(PARI) {e=12; o=24; print1("1, 3, 6, 15, ", e, ", ", o, ", "); for(n=6, 100, if (Mod(n, 2)==0, if (Mod(n, 8)==6, e=e+3); if (Mod(n, 8)==0, e=e+6); if (Mod(n, 8)==2, e=e+18); if (Mod(n, 8)==4, e=e-3); Print1(e, ", "), if (Mod(n, 8)==7, o=o+9); if (Mod(n, 8)==1, o=o+12); if (Mod(n, 8)==3, o=o+27); if (Mod(n, 8)==5, o=o+6); print1(o, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Sep 06 2015
STATUS
approved