login
A261955
Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "side to side" version); for the even n-th generation use the "vertex to side" version; a(n) is the number of triangles added in the n-th generation.
8
1, 3, 6, 15, 12, 24, 15, 33, 21, 45, 39, 72, 36, 78, 39, 87, 45, 99, 63, 126, 60, 132, 63, 141, 69, 153, 87, 180, 84, 186, 87, 195, 93, 207, 111, 234, 108, 240, 111, 249, 117, 261, 135, 288, 132, 294, 135, 303, 141, 315, 159
OFFSET
0,2
COMMENTS
See a comment on V-V and V-S at A249246.
There are a total of 16 combinations as shown in the table below:
+-------------------------------------------------------+
| Even n-th version V-V S-V V-S S-S |
+-------------------------------------------------------+
| Odd n-th version |
| S-S A261953 A261954 a(n) A008486 |
+-------------------------------------------------------+
Note: V-V = vertex to vertex, S-V = side to vertex,
V-S = vertex to side, S-S = side to side.
FORMULA
Conjectures from Colin Barker, Sep 10 2015: (Start)
a(n) = a(n-2)+a(n-8)-a(n-10) for n>13.
G.f.: -(3*x^13+9*x^12-15*x^11-13*x^10-9*x^9-5*x^8-9*x^7-3*x^6-9*x^5-6*x^4-12*x^3-5*x^2-3*x-1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)).
(End)
PROG
(PARI) {e=12; o=24; print1("1, 3, 6, 15, ", e, ", ", o, ", "); for(n=6, 100, if (Mod(n, 2)==0, if (Mod(n, 8)==6, e=e+3); if (Mod(n, 8)==0, e=e+6); if (Mod(n, 8)==2, e=e+18); if (Mod(n, 8)==4, e=e-3); Print1(e, ", "), if (Mod(n, 8)==7, o=o+9); if (Mod(n, 8)==1, o=o+12); if (Mod(n, 8)==3, o=o+27); if (Mod(n, 8)==5, o=o+6); print1(o, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Sep 06 2015
STATUS
approved