login
A261927
Sum of the larger parts of the partitions of n into two squarefree parts.
2
0, 1, 2, 5, 3, 8, 11, 18, 13, 12, 16, 34, 28, 31, 37, 63, 50, 56, 44, 88, 59, 83, 73, 129, 93, 91, 100, 138, 105, 103, 123, 195, 151, 173, 169, 303, 201, 199, 219, 345, 255, 256, 298, 442, 341, 274, 289, 482, 380, 294, 255, 525, 401, 410, 270, 539, 422, 487
OFFSET
1,3
FORMULA
a(n) = Sum_{i = 1..floor(n/2)} ((n - i) * mu(i)^2 * mu(n - i)^2), where mu is the Möbius function (A008683).
a(n) = A262351(n) - A261985(n).
EXAMPLE
a(4) = 5. There are two partitions of 4 into two squarefree parts: (3, 1) and (2, 2). The sum of the larger parts of these partitions is 3 + 2 = 5.
a(5) = 3. There is only one partition of 5 into two squarefree parts: (3, 2). The larger part is 3, thus a(5) = 3.
MAPLE
with(numtheory): A261987:=n->add((n-i)*mobius(i)^2*mobius(n-i)^2, i=1..floor(n/2)): seq(A261987(n), n=1..70);
MATHEMATICA
Table[Sum[(n - i) MoebiusMu[i]^2 * MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 70}]
Table[Total[Select[IntegerPartitions[n, {2}], AllTrue[#, SquareFreeQ]&][[All, 1]]], {n, 60}] (* Harvey P. Dale, Apr 26 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 02 2015
STATUS
approved