login
A261913
The palindromic order of n (defined in Comments).
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2
OFFSET
0,11
COMMENTS
Order 1: palindromes (A002113);
Order 2: not order 1 but is the sum of two palindromes (A261907);
Order 3: not order 1 or 2, but n - previous_palindrome(n) (i.e., n - A261914(n)) gives a number of order 2 (A261910);
Order 4: not order 1, 2, or 3, but subtracting previous_palindrome(previous_palindrome(n)) gives a number of order 2 (A261911);
Order 5: not orders 1, 2, 3, or 4 (A261912).
LINKS
FORMULA
a(n) = A088601(n). - R. J. Mathar, Feb 14 2023
CROSSREFS
Closely related to A261675. See also A088601.
Sequence in context: A257474 A257317 A163376 * A088601 A261675 A028950
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 10 2015
STATUS
approved