login
Decimal expansion of 1 - 2^(-1/3).
2

%I #12 Dec 05 2023 18:31:10

%S 2,0,6,2,9,9,4,7,4,0,1,5,9,0,0,2,6,2,6,2,4,1,4,7,1,8,0,3,6,3,8,4,5,8,

%T 6,9,8,0,4,2,5,3,3,3,6,0,5,0,0,7,3,4,9,5,0,9,5,8,5,7,1,1,9,0,8,7,3

%N Decimal expansion of 1 - 2^(-1/3).

%C Blomer shows that there are x/log^k x powerful numbers up to x, where k = 0.20629947... is this constant.

%H Valentin Blomer, <a href="http://dx.doi.org/10.1112/S0024610704006040">Binary quadratic forms with large discriminants and sums of two squareful numbers II</a>, Journal of the London Mathematical Society 71:1 (2005), pp. 69-84.

%H <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>

%e 0.20629947401590026262414718036384586980425333605007349509585711908739174...

%t First@RealDigits[N[1 - 2^(-1/3), 120] (* _Michael De Vlieger_, Sep 04 2015 *)

%t RealDigits[1-1/Surd[2,3],10,120][[1]] (* _Harvey P. Dale_, Dec 05 2023 *)

%o (PARI) 1 - 2^(-1/3)

%Y Cf. A076871, A001694.

%K nonn,cons,easy

%O 0,1

%A _Charles R Greathouse IV_, Sep 04 2015