login
A261882
Decimal expansion of 32/27.
0
1, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5, 1, 8, 5
OFFSET
1,3
COMMENTS
For any number x >= 32/27 and any e > 0, there is a graph G such that the chromatic polynomial of G has a real root between x - e and x + e. (All real roots of such polynomials are 0, 1, or in this range.)
Continued fraction expansion of (sqrt(730)-10)/9. - Bruno Berselli, Sep 04 2015
Periodic (beyond the first term) with period 3. - Charles R Greathouse IV, Sep 05 2015
Equals the ratio of the wavelengths between the hydrogen spectral lines Lyman-alpha (121.6 nm) and Lyman-beta (102.6 nm). - Sean Stroud, Apr 15 2019
LINKS
Peter J. Cameron's Blog, Algebraic properties of chromatic roots, Oct 04 2016.
Bill Jackson, A zero-free interval for chromatic polynomials of graphs, Combinatorics, Probability and Computing 2:3 (Sept 1993), pp. 325-336.
Bill Jackson and Alan Sokal, Zero-free regions for multivariate Tutte polynomials (alias Potts-model partition functions) of graphs and matroids, J. Combin. Theory Ser. B 99:6 (2009), pp. 869-903.
Carsten Thomassen, The zero-free intervals for chromatic polynomials of graphs, Combin. Probab. Comput. 6:4 (1997), pp. 497-506.
FORMULA
G.f.: x*(1 + x + 8*x^2 + 4*x^3)/((1 - x)*(1 + x + x^2)). - Bruno Berselli, Sep 04 2015
a(n) = 7-(-1)^(n-1 mod 3)/2-5*(-1)^(n mod 3)/2-4*(-1)^(n+1 mod 3), n>1. - Wesley Ivan Hurt, Sep 04 2015
EXAMPLE
1.18518518518518518...
MAPLE
Digits := 100; evalf(32/27); # Wesley Ivan Hurt, Sep 04 2015
MATHEMATICA
First@ RealDigits[N[32/27, 120]] (* Michael De Vlieger, Sep 04 2015 *)
Join[{1}, Table[7 - (-1)^Mod[n - 1, 3]/2 - 5 (-1)^Mod[n, 3]/2 - 4 (-1)^Mod[n + 1, 3], {n, 2, 40}]] (* Wesley Ivan Hurt, Sep 04 2015 *)
PROG
(PARI) 32/27.
CROSSREFS
Cf. A021058.
Sequence in context: A258988 A139721 A307384 * A021058 A036792 A334497
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved