OFFSET
1,2
COMMENTS
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime having a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s.
Guide to related sequences:
seed sequence
0 A261881
1 A261818
2 A053600
3 A082563
4 A261821
5 A261822
6 A261823
7 A261824
8 A261825
9 A261826
000 A262531
0^5 A262532
0^7 A262533
0^9 A260250
010 A260459
111 A261820
1^5 A262497
1^7 A262498
1^9 A262499
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..300
EXAMPLE
As a triangle:
........0
.......101
......31013
.....3310133
....933101339
..1093310133901
30109331013390103
MATHEMATICA
s = {0}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {15}]; s
(* Peter J. C. Moses, Sep 01 2015 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling, Sep 23 2015
STATUS
approved