OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * eta(q^6) * eta(q^8)^2 / (eta(q^3)^2 * eta(q^4)) in powers of q.
Euler transform of period 24 sequence [ 0, 0, 2, 1, 0, 1, 0, -1, 2, 0, 0, 2, 0, 0, 2, -1, 0, 1, 0, 1, 2, 0, 0, 0, ...].
2 * a(n) = A143068(2*n + 1). a(3*n + 2) = 0.
Convolution inverse is A262929. - Michael Somos, Oct 22 2017
EXAMPLE
G.f. = 1 + 2*x^3 + x^4 + 4*x^6 + 2*x^7 + 8*x^9 + 4*x^10 + 15*x^12 + ...
G.f. = q + 2*q^7 + q^9 + 4*q^13 + 2*q^15 + 8*q^19 + 4*q^21 + 15*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/2 (x^2)^(-1/4) EllipticTheta[ 2, 0, x^2] / EllipticTheta[ 4, 0, x^3], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A) * eta(x^8 + A)^2 / (eta(x^3 + A)^2 * eta(x^4 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 09 2015
STATUS
approved