login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261835 Number A(n,k) of compositions of n into distinct parts where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals. 13
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 3, 0, 1, 4, 6, 16, 3, 0, 1, 5, 10, 46, 21, 5, 0, 1, 6, 15, 100, 75, 50, 11, 0, 1, 7, 21, 185, 195, 231, 205, 13, 0, 1, 8, 28, 308, 420, 736, 1414, 292, 19, 0, 1, 9, 36, 476, 798, 1876, 6032, 2376, 587, 27, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Also matrices with k rows of nonnegative integers with distinct positive column sums and total element sum n.

A(2,2) = 3: (matrices and corresponding marked compositions are given)

  [1]   [2]   [0]

  [1]   [0]   [2]

  2ab,  2aa,  2bb.

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = Sum_{i=0..k} C(k,i) * A261836(n,k-i).

EXAMPLE

A(3,2) = 16: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a2aa, 1a2ab, 1a2bb, 1b2aa, 1b2ab, 1b2bb.

Square array A(n,k) begins:

  1,  1,   1,    1,     1,     1,      1,      1, ...

  0,  1,   2,    3,     4,     5,      6,      7, ...

  0,  1,   3,    6,    10,    15,     21,     28, ...

  0,  3,  16,   46,   100,   185,    308,    476, ...

  0,  3,  21,   75,   195,   420,    798,   1386, ...

  0,  5,  50,  231,   736,  1876,   4116,   8106, ...

  0, 11, 205, 1414,  6032, 19320,  51114, 117936, ...

  0, 13, 292, 2376, 11712, 42610, 126288, 322764, ...

MAPLE

b:= proc(n, i, p, k) option remember;

      `if`(i*(i+1)/2<n, 0, `if`(n=0, p!, b(n, i-1, p, k)+

      `if`(i>n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1))))

    end:

A:= (n, k)-> b(n$2, 0, k):

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

b[n_, i_, p_, k_] := b[n, i, p, k] = If[i*(i+1)/2 < n, 0, If[n == 0, p!, b[n, i-1, p, k] + If[i>n, 0, b[n-i, i-1, p+1, k]*Binomial[i+k-1, k-1]]]]; A[n_, k_] := b[n, n, 0, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-Fran├žois Alcover, Jan 16 2017, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A032020, A261840, A261841, A261842, A261843, A261844, A261845, A261846, A261847, A261848.

Rows n=0-4 give: A000012, A001477, A000217, A255211, A228317(n+2).

Main diagonal gives A261837.

Cf. A261780, A261836.

Sequence in context: A286335 A291652 A071569 * A286932 A259475 A323224

Adjacent sequences:  A261832 A261833 A261834 * A261836 A261837 A261838

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Sep 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 12:28 EDT 2020. Contains 337169 sequences. (Running on oeis4.)