The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261721 Fourth-dimensional figurate numbers. 3
 1, 1, 5, 1, 6, 15, 1, 7, 20, 35, 1, 8, 25, 50, 70, 1, 9, 30, 65, 105, 126, 1, 10, 35, 80, 140, 196, 210, 1, 11, 40, 95, 175, 266, 336, 330, 1, 12, 45, 110, 210, 336, 462, 540, 495, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The array as shown in A257200: 1,  5, 15,  35,  70, 126, 210,  330, ... A000332 1,  6, 20,  50, 105, 196, 336,  540, ... A002415 1,  7, 25,  65, 140, 266, 462,  750, ... A001296 1,  8, 30,  80, 175, 336, 588,  960, ... A002417 1,  9, 35,  95, 210, 406, 714, 1170, ... A002418 1, 10, 40, 110, 245, 476, 840, 1380, ... A002419 ... Generating polygons for the sequences are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ... . n-th row sequence is the binomial transform of the fourth row of Pascal's triangle (1,n) followed by zeros; and the fourth partial sum of (1, n, n, n, ...). n-th row sequence is the binomial transform of: ((n-1) * (0, 1, 3, 3, 1, 0, 0, 0) + (1, 4, 6, 4, 1, 0, 0, 0)). Given the n-th row of the array (1, b, c, d, ...), the next row of the array is (1, b, c, d, ...) + (0, 1, 5, 15, 35, ...) REFERENCES Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 195 (Table 80) LINKS Alois P. Heinz, Antidiagonals n = 1..141, flattened FORMULA G.f. for row n: (1 + (n-1)*x)/(1 - x)^5. A(n,k) = C(k+3,3) + n * C(k+3,4) = A080852(n,k). EXAMPLE (1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of the fourth row of Pascal's triangle (1,3) followed by zeros: (1, 6, 12, 10, 3, 0, 0, 0, ...); and the fourth partial sum of (1, 3, 3, 3, 0, 0, 0). (1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of: ((2 * (0, 1, 3, 3, 1, 0, 0, 0, ...) + (1, 4, 6, 4, 1, 0, 0, 0, ...)); that is, the binomial transform of (1, 6, 12, 10, 3, 0, 0, 0, ...). Row 2 of the array is (1, 5, 15, 35, 70, ...) + (0, 1, 5, 15, 35, ...), = (1, 6, 20, 50, 105, ...). MAPLE A:= (n, k)-> binomial(k+3, 3) + n*binomial(k+3, 4): seq(seq(A(d-k, k), k=0..d-1), d=1..13);  # Alois P. Heinz, Aug 31 2015 MATHEMATICA row[1] = LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 15, 35, 70}, m = 10]; row1 = Join[{0}, row[1] // Most]; row[n_] := row[n] = row[n-1] + row1; Table[row[n-k+1][[k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *) PROG (PARI) A(n, k) = binomial(k+3, 3) + n*binomial(k+3, 4) table(n, k) = for(x=1, n, for(y=0, k-1, print1(A(x, y), ", ")); print("")) /* Print initial 6 rows and 8 columns as follows: */ table(6, 8) \\ Felix Fröhlich, Jul 28 2016 CROSSREFS Cf. A257200, A261720 (pyramidal numbers), A000332, A002415, A001296, A002417, A002418, A002419. Similar to A080852 but without row n=0. Main diagonal gives A256859. Sequence in context: A193586 A007397 A204203 * A275490 A052345 A197733 Adjacent sequences:  A261718 A261719 A261720 * A261722 A261723 A261724 KEYWORD nonn,tabl,easy AUTHOR Gary W. Adamson, Aug 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 08:23 EDT 2020. Contains 334767 sequences. (Running on oeis4.)