

A261710


Decimal expansion of Integral_{0..Pi/2} x^2*tan(x)*log(sin(x)) dx (negated).


1



2, 2, 7, 7, 1, 4, 4, 7, 9, 9, 7, 9, 5, 7, 9, 1, 6, 0, 6, 0, 6, 5, 5, 8, 0, 2, 6, 2, 6, 2, 1, 4, 7, 0, 3, 3, 4, 9, 3, 8, 4, 3, 9, 1, 3, 5, 5, 5, 0, 3, 1, 7, 2, 8, 8, 7, 1, 9, 1, 7, 9, 3, 4, 9, 0, 0, 0, 5, 1, 3, 3, 0, 4, 4, 3, 4, 8, 0, 8, 0, 7, 7, 2, 6, 1, 2, 6, 6, 3, 7, 0, 0, 7, 9, 8, 7, 0, 1, 5, 4, 4, 3, 6, 6, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This integral appears in the expression of the 3rd moment of the distribution of the number of vertices of GoudsmitMiles random polygonal cells.


LINKS

Table of n, a(n) for n=0..104.
Steven R. Finch, Random Triangles V, December 22, 2010, p. 9. [Cached copy, with permission of the author]
J. C. Tanner, Polygons Formed by Random Lines in a Plane: Some Further Results, Journal of Applied Probability, Vol. 20, No. 4 (Dec., 1983), pp. 778787. See Eq. 7, p. 783.


EXAMPLE

0.2277144799795791606065580262621470334938439135550317288719179349...


MATHEMATICA

NIntegrate[x^2*Tan[x]*Log[Sin[x]], {x, 0, Pi/2}, WorkingPrecision > 105] // RealDigits // First


CROSSREFS

Sequence in context: A126851 A142070 A152825 * A064288 A054085 A021443
Adjacent sequences: A261707 A261708 A261709 * A261711 A261712 A261713


KEYWORD

nonn,cons,easy


AUTHOR

JeanFrançois Alcover, Aug 29 2015


STATUS

approved



