OFFSET
0,2
COMMENTS
In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k+b))^j, then a(n) ~ 2^((j-3)/2 - j*b/a) * j^(1/4) * exp(Pi*sqrt(j*n/(3*a))) / ((3*a)^(1/4) * n^(3/4)).
FORMULA
a(n) ~ exp(Pi*sqrt(n/3)) / (sqrt(2) * 3^(1/4) * n^(3/4)).
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^(4*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 27 2015
STATUS
approved