The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261612 Expansion of Product_{k>=0} (1 + x^(3*k+1)). 23
 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 3, 3, 2, 4, 4, 2, 4, 5, 3, 5, 7, 4, 5, 8, 6, 7, 10, 7, 7, 12, 10, 9, 14, 12, 10, 16, 16, 13, 19, 19, 15, 22, 24, 19, 25, 28, 22, 29, 35, 28, 33, 40, 33, 38, 48, 41, 44, 55, 48, 51, 66, 59, 58, 74, 69 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA a(n) ~ exp(Pi*sqrt(n)/3) / (2^(4/3) * sqrt(3) * n^(3/4)) * (1 - (Pi/144 + 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 26 2015, extended Jan 16 2017 G.f.: Sum_{k>=0} x^(k*(3*k - 1)/2) / Product_{j=1..k} (1 - x^(3*j)). - Ilya Gutkovskiy, Nov 24 2020 MATHEMATICA nmax = 100; CoefficientList[Series[Product[(1 + x^(3*k+1)), {k, 0, nmax}], {x, 0, nmax}], x] nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *) CROSSREFS Cf. A000009, A000700, A035382, A169975. Cf. A015128, A080054, A261610, A261611, A262928. Sequence in context: A067594 A089533 A284312 * A184241 A054390 A161068 Adjacent sequences:  A261609 A261610 A261611 * A261613 A261614 A261615 KEYWORD nonn AUTHOR Vaclav Kotesovec, Aug 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 02:47 EST 2021. Contains 340414 sequences. (Running on oeis4.)