%I
%S 2,5,7,13,23,29,31,37,41,47,53,61,71,79,101,103,109,127,137,149,151,
%T 157,167,173,181,191,197,199,223,229,239,263,269,271,277,293,311,313,
%U 317,349,353,359,367,373,383,389,397,409,421,431,439,457,461,463,479,487
%N Primes such that z(p) is not divisible by 4 where z(n) is A214028(n), the smallest k such that n divides A000129(k), the kth Pell number.
%H Bernadette Faye, Florian Luca, <a href="http://arxiv.org/abs/1508.05714">Pell Numbers whose Euler Function is a Pell Number</a>, arXiv:1508.05714 [math.NT], 2015.
%e The smallest Pell number divisible by the prime 2 has index 2, which is not divisible by 4, so 2 is in the sequence.
%o (PARI) pell(n) = polcoeff(Vec(x/(12*xx^2) + O(x^(n+1))), n);
%o z(n) = {k=1; while (pell(k) % n, k++); k;}
%o lista(nn) = {forprime(p=2, nn, if (z(p) % 4, print1(p, ", ")););}
%Y Cf. A000129, A214028, A261580.
%K nonn
%O 1,1
%A _Michel Marcus_, Aug 25 2015
