login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261575 Table of Fibonacci numbers in base-60 representation: row n contains the sexagesimal digits of A000045(n) in reversed order. 6
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 29, 1, 24, 2, 53, 3, 17, 6, 10, 10, 27, 16, 37, 26, 4, 43, 41, 9, 1, 45, 52, 1, 26, 2, 3, 11, 55, 4, 37, 57, 7, 48, 52, 12, 25, 50, 20, 13, 43, 33, 38, 33, 54, 51, 16, 28, 1, 29, 50, 22, 2, 20, 7, 51, 3, 49, 57, 13, 6, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A261585(n) = length of n-th row;

T(n,0) = A261606(n) = in base 60: last sexagesimal digit of A000045(n);

T(n,A261607(n)-1) = A261607(n) = in base 60: initial  sexagesimal digit of A000045(n);

A000045(n) = sum(T(n,k)*60^k : k = 0..A261585(n)-1).

LINKS

Reinhard Zumkeller, Rows n = 0..1000 of triangle, flattened

Eric Weisstein's World of Mathematics, Sexagesimal

Wikipedia, Sexagesimal

EXAMPLE

A000045(42) = 20*60^4 + 40*60^3 + 20*60^2 + 38*60^1 + 16*60^0 = 267914296.

. ----------------------------------------------------------------------

.   n | T(n,*)       n | T(n,*)             n | T(n,*)

. ----+---------   ----+---------------   ----+-------------------------

.   0 | [0]         21 | [26,2,3]          42 | [16,38,20,40,20]

.   1 | [1]         22 | [11,55,4]         43 | [17,7,55,26,33]

.   2 | [1]         23 | [37,57,7]         44 | [33,45,15,7,54]

.   3 | [2]         24 | [48,52,12]        45 | [50,52,10,34,27,1]

.   4 | [3]         25 | [25,50,20]        46 | [23,38,26,41,21,2]

.   5 | [5]         26 | [13,43,33]        47 | [13,31,37,15,49,3]

.   6 | [8]         27 | [38,33,54]        48 | [36,9,4,57,10,6]

.   7 | [13]        28 | [51,16,28,1]      49 | [49,40,41,12,0,10]

.   8 | [21]        29 | [29,50,22,2]      50 | [25,50,45,9,11,16]

.   9 | [34]        30 | [20,7,51,3]       51 | [14,31,27,22,11,26]

.  10 | [55]        31 | [49,57,13,6]      52 | [39,21,13,32,22,42]

.  11 | [29,1]      32 | [9,5,5,10]        53 | [53,52,40,54,33,8,1]

.  12 | [24,2]      33 | [58,2,19,16]      54 | [32,14,54,26,56,50,1]

.  13 | [53,3]      34 | [7,8,24,26]       55 | [25,7,35,21,30,59,2]

.  14 | [17,6]      35 | [5,11,43,42]      56 | [57,21,29,48,26,50,4]

.  15 | [10,10]     36 | [12,19,7,9,1]     57 | [22,29,4,10,57,49,7]

.  16 | [27,16]     37 | [17,30,50,51,1]   58 | [19,51,33,58,23,40,12]

.  17 | [37,26]     38 | [29,49,57,0,3]    59 | [41,20,38,8,21,30,20]

.  18 | [4,43]      39 | [46,19,48,52,4]   60 | [0,12,12,7,45,10,33]

.  19 | [41,9,1]    40 | [15,9,46,53,7]    61 | [41,32,50,15,6,41,53]

.  20 | [45,52,1]   41 | [1,29,34,46,12]   62 | [41,44,2,23,51,51,26,1]

PROG

(Haskell)

a261575 n k = a261575_tabf !! n !! k

a261575_row n = a261575_tabf !! n

a261575_tabf = [0] : [1] :

   zipWith (add 0) (tail a261575_tabf) a261575_tabf where

   add c (a:as) (b:bs) = y : add c' as bs where (c', y) = divMod (a+b+c) 60

   add c (a:as) [] = y : add c' as [] where (c', y) = divMod (a+c) 60

   add 1 _ _ = [1]

   add _ _ _ = []

CROSSREFS

Cf. A000045, A261585 (row lengths), A261587 (row sums), A261598 (row products), A261606 (left edge), A261607 (right edge).

Sequence in context: A147660 A013987 A261607 * A261606 A261598 A261587

Adjacent sequences:  A261572 A261573 A261574 * A261576 A261577 A261578

KEYWORD

nonn,tabf,base

AUTHOR

Reinhard Zumkeller, Sep 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)