login
A261574
a(n) = n*(n^2 + 3)*(n^6 + 6*n^4 + 9*n^2 + 3).
1
0, 76, 2786, 46764, 439204, 2744420, 12813606, 48229636, 153992264, 432083484, 1092730090, 2537720636, 5489037036, 11179326964, 21624372014, 40001698260, 71163830416, 122319408236, 203920464114, 330799604044, 523606640180, 810600392196, 1229857906486
OFFSET
0,2
COMMENTS
Also numbers of the form (n-th metallic mean)^9 - 1/(n-th metallic mean)^9, see link to Wikipedia.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000 (first 100 terms from Raphael Ranna)
Wikipedia, Metallic mean
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = -a(-n) = ( (n+sqrt(n^2+4))/2 )^9-1/( (n+sqrt(n^2+4))/2 )^9.
G.f.: 2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10. - Colin Barker, Aug 25 2015
MATHEMATICA
Table[n (n^2 + 3) (n^6 + 6 n^4 + 9 n^2 + 3), {n, 0, 25}] (* Bruno Berselli, Aug 25 2015 *)
PROG
(PARI) concat(0, Vec(2*x*(38*x^8 +1013*x^7 +11162*x^6 +43907*x^5 +69200*x^4 +43907*x^3 +11162*x^2 +1013*x +38) / (x -1)^10 + O(x^50))) \\ Colin Barker, Aug 25 2015
(Magma) [n*(n^2+3)*(n^6+6*n^4+9*n^2+3): n in [0..25]]; // Bruno Berselli, Aug 25 2015
KEYWORD
nonn,easy
AUTHOR
Raphael Ranna, Aug 24 2015
EXTENSIONS
Formula in Name by Colin Barker, Aug 25 2015
Offset changed from 1 to 0 and initial 0 added by Bruno Berselli, Aug 25 2015
STATUS
approved