The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261567 Expansion of Product_{k>=1} (1/(1 + 3*x^k))^k. 5
 1, -3, 3, -18, 69, -168, 504, -1578, 4800, -14310, 42396, -128049, 385839, -1154271, 3458847, -10386477, 31173873, -93490386, 280426833, -841384614, 2524300014, -7572585150, 22717270491, -68152872885, 204460229394, -613377236379, 1840126774737, -5520391488054 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, for z > 1 or z < -1, if g.f. = Product_{k>=1} (1/(1 - z*x^k))^k, then a(n) ~ c * z^n, where c = Product_{j>=1} 1/(1 - 1/z^j)^(j+1). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 FORMULA a(n) ~ c * (-3)^n, where c = Product_{j>=1} 1/(1 - 1/(-3)^j)^(j+1) = 0.72392917591300902192520561680114697538581509655711959502191898288595312452... MATHEMATICA nmax = 40; CoefficientList[Series[Product[(1/(1 + 3*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*3^k/k*x^k/(1-x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x] CROSSREFS Cf. A255528, A261566, A261582. Sequence in context: A192527 A227773 A189737 * A096935 A136475 A143180 Adjacent sequences:  A261564 A261565 A261566 * A261568 A261569 A261570 KEYWORD sign AUTHOR Vaclav Kotesovec, Aug 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 04:52 EDT 2020. Contains 333267 sequences. (Running on oeis4.)