OFFSET
1,1
COMMENTS
Table starts
....48....80...170..336..652.1293.2588.5100..9996.19788.39102.76977.151492
....80...132...269..484..871.1702.3230.6084.11656.22140.41998.80163.152575
...170...269...516..754.1210.2187.3436.5368..9414.14902.22538.38820..62948
...336...484...754..769..816.1286.1510.1615..2362..3215..3431..4393...7048
...652...871..1210..816..656.1273.1084..855..1036..1259...906...967...1868
..1293..1702..2187.1286.1273.2879.1566..857...828..1130...786...961...2211
..2588..3230..3436.1510.1084.1566..824..602...738..1065...640...756...1266
..5100..6084..5368.1615..855..857..602..502...626...904...634...685....822
..9996.11656..9414.2362.1036..828..738..626...668...690...656...603....634
.19788.22140.14902.3215.1259.1130.1065..904...690...612...640...677....665
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..3609
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 12] for n>14
k=2: [order 16] for n>17
k=3: [order 23] for n>30
k=4: [order 38] for n>44
k=5: a(n) = 2*a(n-7) -2*a(n-21) +a(n-28) for n>34
k=6: a(n) = a(n-14) for n>23
k=7: a(n) = a(n-14) for n>23
Empirical apparent periods for column k:
k=6: period of length 14 starting at n=10: 1130 786 961 2211 1036 680 881 1315 1001 1173 2670 1430 806 822
k=7: period of length 14 starting at n=10: 1065 640 756 1266 641 502 648 1022 654 782 1353 740 578 734
Empirical apparent period for diagonal:
diagonal: period of length 14 starting at n=10: 612 648 724 688 458 512 800 688 608 556 1606 656 478 652
Empirical repeating tile pattern from columns 10-23 and rows 10-23:
..612..640..677..665..565..495..547..650..709..729..798..821..768..666
..640..648..819..804..545..528..591..668..628..528..606..574..610..652
..677..819..724..820..585..662..831..866..893..640..732..652..653..599
..665..804..820..688..532..620..687..850.1019.1032.1147..926..746..628
..565..545..585..532..458..516..512..522..559..611..619..557..592..598
..495..528..662..620..516..512..577..518..512..584..527..460..495..560
..547..591..831..687..512..577..800..777..929..958..735..574..601..726
..650..668..866..850..522..518..777..688..737..918..983..778..791..896
..709..628..893.1019..559..512..929..737..608..602..821..588..594..990
..729..528..640.1032..611..584..958..918..602..556..944..678..575..726
..798..606..732.1147..619..527..735..983..821..944.1606.1013..653..676
..821..574..652..926..557..460..574..778..588..678.1013..656..536..660
..768..610..653..746..592..495..601..791..594..575..653..536..478..584
..666..652..599..628..598..560..726..896..990..726..676..660..584..652
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1..0..0....1..0..0..0..0..1....0..0..1..0..0..0....0..0..1..0..1..0
..0..0..1..0..0..0....0..1..0..0..1..0....0..0..0..0..0..1....0..1..0..0..1..0
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..1....0..0..0..0..0..0....0..0..1..0..0..1....0..0..0..0..0..0
..0..0..1..0..0..0....0..0..0..1..0..0....0..1..0..0..0..0....0..0..1..0..0..1
..0..1..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..1....0..1..0..0..0..0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 24 2015
STATUS
approved