login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261519 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2^k). 9
1, 4, 16, 60, 208, 692, 2224, 6940, 21152, 63188, 185488, 536268, 1529648, 4310804, 12017264, 33171916, 90745472, 246201412, 662897232, 1772295020, 4707336848, 12426673188, 32617079280, 85152717404, 221183486496, 571784014244, 1471463190032, 3770577250716 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Convolution of A034899 and A102866.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1000

Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO]

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.

FORMULA

a(n) ~ 2^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(2^(2*j)-1)) = 0.2545212486386431009939814261118792033...

MATHEMATICA

nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^k), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A156616, A261520, A260916, A001934, A015128.

Sequence in context: A217374 A055295 A121254 * A262591 A119827 A089883

Adjacent sequences:  A261516 A261517 A261518 * A261520 A261521 A261522

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Aug 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 18:51 EDT 2019. Contains 326133 sequences. (Running on oeis4.)