login
A261475
Number of binary strings of length n+10 such that the smallest number whose binary representation is not visible in the string is 10.
2
0, 2, 24, 130, 471, 1401, 3734, 9258, 21826, 49561, 109261, 235327, 497495, 1035744, 2129126, 4330524, 8729070, 17460382, 34695315, 68549561, 134764551, 263788114, 514366212, 999590406, 1936741832, 3742534848, 7214885826, 13879427752, 26649404779, 51081190435
OFFSET
0,2
LINKS
FORMULA
G.f.: -(4*x^38 +6*x^37 +7*x^36 +13*x^35 -40*x^34 -39*x^33 -144*x^32 -197*x^31 -142*x^30 -230*x^29 +157*x^28 +66*x^27 +679*x^26 +153*x^25 +850*x^24 -429*x^23 +260*x^22 -820*x^21 -624*x^20 +294*x^19 -1720*x^18 +3212*x^17 -4270*x^16 +6808*x^15 -7839*x^14 +8816*x^13 -8988*x^12 +7604*x^11 -6159*x^10 +4152*x^9 -2314*x^8 +1162*x^7 -331*x^6 -4*x^5 +48*x^4 -57*x^3 +24*x^2 +2*x-2)*x / ((x^2+1) *(x^2+x+1) *(x^2-x+1) *(x^2+x-1) *(2*x^3+x-1) *(x^3-x^2+2*x-1) *(x^4+x^3-1) *(x^4+x-1) *(x^5+x^3+x-1) *(x^5+x^4+x-1) *(x^4+2*x^3-1) *(x^4-2*x^3+x^2-2*x+1) *(x^3+x-1) *(x-1)^3).
a(n) = A261019(n+10,10).
CROSSREFS
Column k=10 of A261019.
Sequence in context: A060817 A045820 A098455 * A078994 A290775 A000185
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 20 2015
STATUS
approved