%I #11 Oct 30 2024 18:55:18
%S 0,2,10,40,116,296,699,1557,3325,6893,13964,27789,54536,105854,203645,
%T 388970,738596,1395718,2626914,4927664,9217604,17201570,32036763,
%U 59564873,110586325,205056292,379823379,702897160,1299744979,2401747773,4435467036,8187063102
%N Number of binary strings of length n+6 such that the smallest number whose binary representation is not visible in the string is 8.
%H Alois P. Heinz, <a href="/A261473/b261473.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-5,-6,10,21,0,-29,-33,11,44,30,-16,-36,-17,9,16,6,-2,-3,-1).
%F G.f.: (x^16 +5*x^15 +11*x^14 +10*x^13 -9*x^12 -40*x^11 -52*x^10 -19*x^9 +36*x^8 +61*x^7 +31*x^6 -13*x^5 -26*x^4 -14*x^3 +4*x^2 +2*x+2) *x / ((x+1) *(x^2+x+1) *(x^3+x^2-1) *(x^2+x-1) *(x^3+x^2+x-1) *(x^4+x^3-1) *(x^3+x-1) *(x-1)^3).
%F a(n) = A261019(n+6,8).
%t CoefficientList[Series[(x^16+5x^15+11x^14+10x^13-9x^12-40x^11-52x^10-19x^9+36x^8+61x^7+31x^6-13x^5-26x^4- 14x^3+ 4x^2+ 2x+2)x/((x+1)(x^2+x+1)(x^3+x^2-1)(x^2+x-1)(x^3+x^2+x-1)(x^4+x^3-1)(x^3+x-1)(x-1)^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,-2,-5,-6,10,21,0,-29,-33,11,44,30,-16,-36,-17,9,16,6,-2,-3,-1},{0,2,10,40,116,296,699,1557,3325,6893,13964,27789,54536,105854,203645,388970,738596,1395718,2626914,4927664,9217604},40] (* _Harvey P. Dale_, Oct 30 2024 *)
%Y Column k=8 of A261019.
%K nonn,easy
%O 0,2
%A _Alois P. Heinz_, Aug 20 2015