login
A261443
Number of binary strings of length n+5 such that the smallest number whose binary representation is not visible in the string is 7.
2
0, 2, 9, 31, 79, 185, 408, 864, 1771, 3555, 7021, 13696, 26453, 50700, 96565, 182983, 345269, 649188, 1217000, 2275699, 4246229, 7908427, 14705711, 27307682, 50648414, 93841900, 173714334, 321316013, 593922885, 1097150252, 2025690002, 3738341466, 6896182121
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (4,-3,-3,-1,3,7,2,-4,-10,-3,3,7,3,-1,-2,-1).
FORMULA
a(n) = A261019(n+5,7).
G.f.: -(x^12+3*x^11+3*x^10-8*x^8-13*x^7-14*x^6-x^5+9*x^4+12*x^3-x^2-x-2)*x / ((x+1)*(x^2+1)*(x^2+x-1)*(x^3+x^2-1)*(x^3+x^2+x-1)*(x^3+x-1)*(x-1)^2). - Alois P. Heinz, Aug 19 2015
PROG
(Haskell)
a261443 n = a261019' (n + 5) 7
CROSSREFS
Column k=7 of A261019.
Sequence in context: A151823 A084652 A188776 * A211924 A295134 A277242
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 18 2015
EXTENSIONS
More terms from Alois P. Heinz, Aug 19 2015
STATUS
approved