login
A261441
Number of binary strings of length n+3 such that the smallest number whose binary representation is not visible in the string is 5.
2
0, 1, 5, 15, 35, 73, 144, 274, 509, 931, 1685, 3027, 5409, 9628, 17088, 30261, 53497, 94447, 166563, 293489, 516772, 909402, 1599585, 2812479, 4943461, 8686739, 15261105, 26806184, 47077920, 82669241, 145152429, 254839087, 447378963, 785340873, 1378536968
OFFSET
0,3
FORMULA
a(n) = A261019(n+3,5).
G.f.: -(x^5+2*x^3-1)*x/((x^3-x^2+2*x-1)*(x^3+x-1)*(x-1)^2). - Alois P. Heinz, Aug 19 2015
PROG
(Haskell)
a261441 0 = 0
a261441 n = a261019' (n + 3) 5
CROSSREFS
Column k=5 of A261019.
Sequence in context: A145133 A270784 A368475 * A213580 A221140 A330911
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 18 2015
EXTENSIONS
More terms from Alois P. Heinz, Aug 19 2015
STATUS
approved