login
A261365
Prime-numbered rows of Pascal's triangle.
1
1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 1, 19, 171, 969, 3876, 11628, 27132, 50388, 75582, 92378, 92378, 75582, 50388, 27132, 11628, 3876, 969, 171, 19, 1
OFFSET
1,2
LINKS
Maghraoui Abdelkader, Table of n, a(n) for n = 1..4273
FORMULA
T(n,k) = binomial(prime(n), k).
EXAMPLE
1,2,1;
1,3,3,1;
1,5,10,10,5,1;
1,7,21,35,35,21,7,1;
1,11,55,165,330,462,462,330,165,55,11,1;
MATHEMATICA
Table[Binomial[Prime@ n, k], {n, 8}, {k, 0, Prime@ n}] // Flatten (* Michael De Vlieger, Aug 20 2015 *)
PROG
(PARI) forprime(n=2, 20, for(k=0, n, print1(binomial(n, k), ", ")))
CROSSREFS
Cf. A000040 (2nd column), A008837 (3rd column).
Sequence in context: A194672 A034364 A183610 * A261507 A304942 A090011
KEYWORD
nonn,tabf,less
AUTHOR
STATUS
approved