OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. In general, any positive rational number r can be written as m/n, where m and n are positive integers such that prime(prime(m))*prime(prime(n)) = prime(p)+2 for some prime p.
This implies that the sequence A261352 has infinitely many terms.
REFERENCES
Jing-run Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..382
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(1) = 11 since prime(prime(11))*prime(prime(11*1)) = prime(31)^2 = 127^2 = 16129 = prime(1877)+2 with 1877 prime.
a(4) = 606 since prime(prime(606))*prime(prime(606*4)) = prime(4457)*prime(21589) = 42643*244471 = 10424976853 = prime(473490161)+2 with 473490161 prime.
MATHEMATICA
f[n_]:=Prime[Prime[n]]
PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]]
Do[k=0; Label[bb]; k=k+1; If[PQ[f[k]*f[k*n]-2], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", k]; Continue, {n, 1, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 15 2015
STATUS
approved