login
Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.
4

%I #25 Jun 18 2022 12:28:08

%S 1,0,1,0,2,3,0,4,10,11,0,8,36,48,49,0,16,136,236,256,257,0,32,528,

%T 1248,1508,1538,1539,0,64,2080,6896,9696,10256,10298,10299,0,128,8256,

%U 39168,66384,74784,75848,75904,75905,0,256,32896,226496,475136,586352,607520,609368,609440,609441

%N Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.

%C C_t(n) is the number of sequences of t top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves.

%C C_t(n) = <pi^t, 1_{BSym_n}> where pi is the permutation character of the hyperoctahedral group BSym_n = C_2 wreath Sym_n given by its imprimitive action on a set of size 2n. This gives a combinatorial interpretation of C_t(n) using sequences of box moves on pairs of Young diagrams.

%C C_t(t) is the number of set partitions of a set of size t with an even number of elements in each part distinguished by marks.

%C C_t(n) = C_t(t) if n > t.

%H Alois P. Heinz, <a href="/A261275/b261275.txt">Rows n = 0..140, flattened</a>

%H John R. Britnell and Mark Wildon, <a href="http://arxiv.org/abs/1507.04803">Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D</a>, arXiv:1507.04803 [math.CO], 2015.

%F G.f.: sum(t>=0, n>=0, C_t(n)x^t/t!y^n) = exp(y/2 (exp(2*x)-1))/(1-y).

%F C_t(n) = Sum_{i=0..n} A075497(t,i).

%e Triangle starts:

%e 1;

%e 0, 1;

%e 0, 2, 3;

%e 0, 4, 10, 11;

%e 0, 8, 36, 48, 49;

%e 0, 16, 136, 236, 256, 257;

%e 0, 32, 528, 1248, 1508, 1538, 1539;

%e 0, 64, 2080, 6896, 9696, 10256, 10298, 10299;

%e ...

%p with(combinat):

%p b:= proc(n, i) option remember; expand(`if`(n=0, 1,

%p `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(

%p binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))

%p end:

%p T:= n-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..n))(b(n$2)):

%p seq(T(n), n=0..12); # _Alois P. Heinz_, Aug 13 2015

%t CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}];

%t Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten

%t (* Second program: *)

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]];

%t T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]];

%t Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Nov 07 2017, after _Alois P. Heinz_ *)

%Y Columns n=0,1,2,3 give A000007, A000079, A007582, A233162 (proved for n=3 in reference above).

%Y Main diagonal gives A004211.

%Y Cf. A075497.

%K nonn,tabl

%O 0,5

%A _Mark Wildon_, Aug 13 2015