%I #10 Aug 12 2015 16:12:31
%S 1,-4,2,-2,-31,-288,-2939,-33944,-438614,-6266312,-98050303,
%T -1667563622,-30631857759,-604518210964,-12758658946466,
%U -286833669370926,-6844757550430019,-172833310268551740,-4604828067485736507,-129123684195177403168,-3801830662346341617586
%N Coefficients in an asymptotic expansion of sequence A261239.
%H Vaclav Kotesovec, <a href="/A261253/b261253.txt">Table of n, a(n) for n = 0..400</a>
%F a(k) ~ -k! / (log(2))^(k+1).
%F For n>0, a(n) = Sum_{k=1..n} A261254(k) * Stirling2(n-1, k-1).
%e A261239(n)/(-3*n!) ~ 1 - 4/n + 2/n^2 - 2/n^3 - 31/n^4 - 288/n^5 - 2939/n^6 - ...
%t Flatten[{1, Table[Sum[CoefficientList[Assuming[Element[x, Reals], Series[E^(4/x)*x^4/ExpIntegralEi[1/x]^4, {x, 0, 25}]], x][[k+1]] * StirlingS2[n-1, k-1], {k, 1, n}], {n, 1, 25}]}]
%Y Cf. A003319, A260503, A259472, A261214, A261239, A261254.
%K sign
%O 0,2
%A _Vaclav Kotesovec_, Aug 12 2015