login
A261232
a(n) = number of steps to reach 0 when starting from k = 3^n and repeatedly applying the map that replaces k with k - (sum of digits in base-3 representation of k).
5
1, 2, 4, 9, 21, 50, 124, 320, 850, 2295, 6251, 17113, 47014, 129606, 358839, 998806, 2796094, 7869801, 22251148, 63141640, 179701240, 512744600, 1466635090, 4205423896, 12087339724, 34816804311, 100469592522, 290336059741, 839932833291, 2432050970421, 7047731703138, 20440131344751, 59334695322384, 172409162871824, 501489513690424
OFFSET
0,2
FORMULA
a(0) = 1; for n >= 1, a(n) = A261234(n-1) + a(n-1).
a(n) = A261231(3^n).
a(n) = 1 + A261233(n).
PROG
(Scheme, two variants)
(definec (A261232 n) (if (zero? n) 1 (+ (A261234 (- n 1)) (A261232 (- n 1)))))
(define (A261232 n) (A261231 (A000244 n)))
CROSSREFS
One more than A261233.
Cf. also A213710.
Sequence in context: A318008 A199410 A091600 * A176334 A257386 A048285
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 13 2015
EXTENSIONS
Terms from a(24) onward added from the output of Hiroaki Yamanouchi's program by Antti Karttunen, Aug 16 2015
STATUS
approved