

A261172


Value of b for which A260871(n) = A[b](k), with k = A261171(n); A[b](k) = the number whose base b representation is the concatenation of the base b representations of (1, ..., k, k1, ..., 1).


4



2, 3, 2, 4, 3, 6, 9, 10, 11, 16, 12, 14, 22, 18, 25, 20, 2, 6, 18, 14, 7, 40, 31, 25, 23, 20, 22, 62, 65, 68, 29, 23, 38, 26, 104, 6, 34, 52
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For more data, see the 2nd column of D. Broadhurst's list of [n, b, k, length(A260871(n))] given in A260871.


LINKS

Table of n, a(n) for n=1..38.


FORMULA

A260871(n) = A[a(n)](A261171(n)), where A[b](k) = Sum_{i=1..#d} d[i]*b^(#di), d = concatenation of (1, 2, ..., k, k1, ..., 1) all written in base b.


EXAMPLE

A260871(1) = A[2](2), therefore a(1) = 2.
A260871(2) = A[3](3), therefore a(2) = 3.
A260871(3) = A[2](4), therefore a(3) = 2.


PROG

(PARI) A261172_list(LIM=1e499)={my(A=List(), p, d); for(b=2, 9e9, for(n=b, 9e9, if(LIM<p=sum(i=1, #d=concat(vector(n*21, k, digits(min(k, n*2k), b))), d[i]*b^(#di)), break(2(n>b))); ispseudoprime(p)&&listput(A, [log(p), n]))); apply(t>t[2], vecsort(A))}


CROSSREFS

Cf. A173427, A260853  A260859, A173426, A260861  A260866 and A260860 for A[b] with b=2, ..., b=16 and b=60.
See also A260852 = { primes of the form A260851(b) = A[b](b), b in A260343 }.
Sequence in context: A026242 A130526 A174523 * A134834 A035583 A145178
Adjacent sequences: A261169 A261170 A261171 * A261173 A261174 A261175


KEYWORD

nonn,base


AUTHOR

M. F. Hasler, Aug 23 2015


STATUS

approved



