login
A261172
Value of b for which A260871(n) = A[b](k), with k = A261171(n); A[b](k) = the number whose base-b representation is the concatenation of the base-b representations of (1, ..., k, k-1, ..., 1).
4
2, 3, 2, 4, 3, 6, 9, 10, 11, 16, 12, 14, 22, 18, 25, 20, 2, 6, 18, 14, 7, 40, 31, 25, 23, 20, 22, 62, 65, 68, 29, 23, 38, 26, 104, 6, 34, 52
OFFSET
1,1
COMMENTS
For more data, see the 2nd column of D. Broadhurst's list of [n, b, k, length(A260871(n))] given in A260871.
FORMULA
A260871(n) = A[a(n)](A261171(n)), where A[b](k) = Sum_{i=1..#d} d[i]*b^(#d-i), d = concatenation of (1, 2, ..., k, k-1, ..., 1) all written in base b.
EXAMPLE
A260871(1) = A[2](2), therefore a(1) = 2.
A260871(2) = A[3](3), therefore a(2) = 3.
A260871(3) = A[2](4), therefore a(3) = 2.
PROG
(PARI) A261172_list(LIM=1e499)={my(A=List(), p, d); for(b=2, 9e9, for(n=b, 9e9, if(LIM<p=sum(i=1, #d=concat(vector(n*2-1, k, digits(min(k, n*2-k), b))), d[i]*b^(#d-i)), break(2-(n>b))); ispseudoprime(p)&&listput(A, [log(p), n]))); apply(t->t[2], vecsort(A))}
CROSSREFS
Cf. A173427, A260853 - A260859, A173426, A260861 - A260866 and A260860 for A[b] with b=2, ..., b=16 and b=60.
See also A260852 = { primes of the form A260851(b) = A[b](b), b in A260343 }.
Sequence in context: A351955 A174523 A363159 * A374192 A134834 A035583
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Aug 23 2015
STATUS
approved